Correlation of Car S(1) → Chl with Chl → Car S(1) energy transfer supports the excitonic model in quenched light harvesting complex II.

نویسندگان

  • Pen-Nan Liao
  • Christoph-Peter Holleboom
  • Laura Wilk
  • Werner Kühlbrandt
  • Peter J Walla
چکیده

Recently, excitonic carotenoid-chlorophyll interactions have been proposed as a simple but effective model for the down-regulation of photosynthesis in plants. The model was proposed on the basis of quenching-correlated electronic carotenoid-chlorophyll interactions (Car S(1) → Chl) determined by Car S(1) two-photon excitation and red-shifted absorption bands. However, if excitonic interactions are indeed responsible for this effect, a simultaneous correlation of quenching with increased energy transfer in the opposite direction, Chl Q(y) → Car S(1), should be observed. Here we present a systematic study on the correlation of Car S(1) → Chl and Chl → Car S(1) energy transfer with the occurrence of red-shifted bands and quenching in isolated LHCII. We found a direct correlation between all four phenomena, supporting our conclusion that excitonic Car S(1)-Chl interactions provide low-lying states serving as energy traps and dissipative valves for excess excitation energy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls.

Selective 2-photon excitation (TPE) of carotenoid dark states, Car S(1), shows that in the major light-harvesting complex of photosystem II (LHCII), the extent of electronic interactions between carotenoid dark states (Car S(1)) and chlorophyll (Chl) states, phi(Coupling)(Car S(1)-Chl), correlates linearly with chlorophyll fluorescence quenching under different experimental conditions. Simultan...

متن کامل

Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy.

The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and em...

متن کامل

The influence of aggregation on triplet formation in light-harvesting chlorophyll a/b pigment-protein complex II of green plants.

The influence of aggregation on triplet formation in the light-harvesting pigment-protein complex of photosystem II of green plants (LHCII) has been studied with time-resolved laser flash photolysis. The aggregation state of LHCII has been varied by changing the detergent concentration. The triplet yield increases upon disaggregation and follows the same dependence on the detergent concentratio...

متن کامل

Characterization of three forms of light-harvesting chlorophyll a/b-protein complexes of photosystem II isolated from the green alga, Dunaliella salina.

Three forms of light-harvesting chlorophyll a/b-protein complexes of photosystem II (LHC II) were isolated from the thylakoid membranes of Dunaliella salina grown under different irradiance conditions. Cells grown under a low intensity light condition (80 micromol quanta m(-2) s(-1)) contained one form of LHC II, LHC-L. Two other forms of LHC II, LHC-H1 and LHC-H2, were separated from the cells...

متن کامل

How reduced excitonic coupling enhances light harvesting in the main photosynthetic antennae of diatoms.

Strong excitonic interactions are a key design strategy in photosynthetic light harvesting, expanding the spectral cross-section for light absorption and creating considerably faster and more robust excitation energy transfer. These molecular excitons are a direct result of exceptionally densely packed pigments in photosynthetic proteins. The main light-harvesting complexes of diatoms, known as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 114 47  شماره 

صفحات  -

تاریخ انتشار 2010